Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Neuropsychology ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602816

RESUMO

OBJECTIVE: We aimed to illustrate how complex cognitive data can be used to create domain-specific and general cognitive composites relevant to Alzheimer disease research. METHOD: Using equipercentile equating, we combined data from the Charles F. and Joanne Knight Alzheimer Disease Research Center that spanned multiple iterations of the Uniform Data Set. Exploratory factor analyses revealed four domain-specific composites representing episodic memory, semantic memory, working memory, and attention/processing speed. The previously defined preclinical Alzheimer disease cognitive composite (PACC) and a novel alternative, the Knight-PACC, were also computed alongside a global composite comprising all available tests. These three composites allowed us to compare the usefulness of domain and general composites in the context of predicting common Alzheimer disease biomarkers. RESULTS: General composites slightly outperformed domain-specific metrics in predicting imaging-derived amyloid, tau, and neurodegeneration burden. Power analyses revealed that the global, Knight-PACC, and attention and processing speed composites would require the smallest sample sizes to detect cognitive change in a clinical trial, while the Alzheimer Disease Cooperative Study-PACC required two to three times as many participants. CONCLUSIONS: Analyses of cognition with the Knight-PACC and our domain-specific composites offer researchers flexibility by providing validated outcome assessments that can equate across test versions to answer a wide range of questions regarding cognitive decline in normal aging and neurodegenerative disease. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

2.
JAMA Netw Open ; 7(4): e244266, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558141

RESUMO

Importance: Frontotemporal lobar degeneration (FTLD) is relatively rare, behavioral and motor symptoms increase travel burden, and standard neuropsychological tests are not sensitive to early-stage disease. Remote smartphone-based cognitive assessments could mitigate these barriers to trial recruitment and success, but no such tools are validated for FTLD. Objective: To evaluate the reliability and validity of smartphone-based cognitive measures for remote FTLD evaluations. Design, Setting, and Participants: In this cohort study conducted from January 10, 2019, to July 31, 2023, controls and participants with FTLD performed smartphone application (app)-based executive functioning tasks and an associative memory task 3 times over 2 weeks. Observational research participants were enrolled through 18 centers of a North American FTLD research consortium (ALLFTD) and were asked to complete the tests remotely using their own smartphones. Of 1163 eligible individuals (enrolled in parent studies), 360 were enrolled in the present study; 364 refused and 439 were excluded. Participants were divided into discovery (n = 258) and validation (n = 102) cohorts. Among 329 participants with data available on disease stage, 195 were asymptomatic or had preclinical FTLD (59.3%), 66 had prodromal FTLD (20.1%), and 68 had symptomatic FTLD (20.7%) with a range of clinical syndromes. Exposure: Participants completed standard in-clinic measures and remotely administered ALLFTD mobile app (app) smartphone tests. Main Outcomes and Measures: Internal consistency, test-retest reliability, association of smartphone tests with criterion standard clinical measures, and diagnostic accuracy. Results: In the 360 participants (mean [SD] age, 54.0 [15.4] years; 209 [58.1%] women), smartphone tests showed moderate-to-excellent reliability (intraclass correlation coefficients, 0.77-0.95). Validity was supported by association of smartphones tests with disease severity (r range, 0.38-0.59), criterion-standard neuropsychological tests (r range, 0.40-0.66), and brain volume (standardized ß range, 0.34-0.50). Smartphone tests accurately differentiated individuals with dementia from controls (area under the curve [AUC], 0.93 [95% CI, 0.90-0.96]) and were more sensitive to early symptoms (AUC, 0.82 [95% CI, 0.76-0.88]) than the Montreal Cognitive Assessment (AUC, 0.68 [95% CI, 0.59-0.78]) (z of comparison, -2.49 [95% CI, -0.19 to -0.02]; P = .01). Reliability and validity findings were highly similar in the discovery and validation cohorts. Preclinical participants who carried pathogenic variants performed significantly worse than noncarrier family controls on 3 app tasks (eg, 2-back ß = -0.49 [95% CI, -0.72 to -0.25]; P < .001) but not a composite of traditional neuropsychological measures (ß = -0.14 [95% CI, -0.42 to 0.14]; P = .32). Conclusions and Relevance: The findings of this cohort study suggest that smartphones could offer a feasible, reliable, valid, and scalable solution for remote evaluations of FTLD and may improve early detection. Smartphone assessments should be considered as a complementary approach to traditional in-person trial designs. Future research should validate these results in diverse populations and evaluate the utility of these tests for longitudinal monitoring.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Coortes , Demência Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/patologia , Degeneração Lobar Frontotemporal/psicologia , Testes Neuropsicológicos , Reprodutibilidade dos Testes , Smartphone , Ensaios Clínicos como Assunto
3.
JAMA Neurol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683602

RESUMO

Importance: Effects of antiamyloid agents, targeting either fibrillar or soluble monomeric amyloid peptides, on downstream biomarkers in cerebrospinal fluid (CSF) and plasma are largely unknown in dominantly inherited Alzheimer disease (DIAD). Objective: To investigate longitudinal biomarker changes of synaptic dysfunction, neuroinflammation, and neurodegeneration in individuals with DIAD who are receiving antiamyloid treatment. Design, Setting, and Participants: From 2012 to 2019, the Dominantly Inherited Alzheimer Network Trial Unit (DIAN-TU-001) study, a double-blind, placebo-controlled, randomized clinical trial, investigated gantenerumab and solanezumab in DIAD. Carriers of gene variants were assigned 3:1 to either drug or placebo. The present analysis was conducted from April to June 2023. DIAN-TU-001 spans 25 study sites in 7 countries. Biofluids and neuroimaging from carriers of DIAD gene variants in the gantenerumab, solanezumab, and placebo groups were analyzed. Interventions: In 2016, initial dosing of gantenerumab, 225 mg (subcutaneously every 4 weeks) was increased every 8 weeks up to 1200 mg. In 2017, initial dosing of solanezumab, 400 mg (intravenously every 4 weeks) was increased up to 1600 mg every 4 weeks. Main Outcomes and Measures: Longitudinal changes in CSF levels of neurogranin, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase 3-like 1 protein (YKL-40), glial fibrillary acidic protein (GFAP), neurofilament light protein (NfL), and plasma levels of GFAP and NfL. Results: Of 236 eligible participants screened, 43 were excluded. A total of 142 participants (mean [SD] age, 44 [10] years; 72 female [51%]) were included in the study (gantenerumab, 52 [37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Relative to placebo, gantenerumab significantly reduced CSF neurogranin level at year 4 (mean [SD] ß = -242.43 [48.04] pg/mL; P < .001); reduced plasma GFAP level at year 1 (mean [SD] ß = -0.02 [0.01] ng/mL; P = .02), year 2 (mean [SD] ß = -0.03 [0.01] ng/mL; P = .002), and year 4 (mean [SD] ß = -0.06 [0.02] ng/mL; P < .001); and increased CSF sTREM2 level at year 2 (mean [SD] ß = 1.12 [0.43] ng/mL; P = .01) and year 4 (mean [SD] ß = 1.06 [0.52] ng/mL; P = .04). Solanezumab significantly increased CSF NfL (log) at year 4 (mean [SD] ß = 0.14 [0.06]; P = .02). Correlation analysis for rates of change found stronger correlations between CSF markers and fluid markers with Pittsburgh compound B positron emission tomography for solanezumab and placebo. Conclusions and Relevance: This randomized clinical trial supports the importance of fibrillar amyloid reduction in multiple AD-related processes of neuroinflammation and neurodegeneration in CSF and plasma in DIAD. Additional studies of antiaggregated amyloid therapies in sporadic AD and DIAD are needed to determine the utility of nonamyloid biomarkers in determining disease modification. Trial Registration: ClinicalTrials.gov Identifier: NCT04623242.

4.
Alzheimers Dement ; 20(5): 3649-3656, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480678

RESUMO

Prior authorization criteria for Federal Drug Administration (FDA) approved immunotherapeutics, among the class of anti-amyloid monoclonal antibodies (mAbs), established by state drug formulary committees, are tailored for adults with late-onset Alzheimer's disease. This overlooks adults with Down syndrome (DS), who often experience dementia at a younger age and with different diagnostic assessment outcomes. This exclusion may deny DS adults access to potential disease-modifying treatments. To address this issue, an international expert panel convened to establish adaptations of prescribing criteria suitable for DS patients and parameters for access to Centers for Medicare & Medicaid Services (CMS) registries. The panel proposed mitigating disparities by modifying CMS and payer criteria to account for younger onset age, using alternative language and assessment instruments validated for cognitive decline in the DS population. The panel also recommended enhancing prescribing clinicians' diagnostic capabilities for DS and initiated awareness-raising activities within healthcare organizations. These efforts facilitated discussions with federal officials, aimed at achieving equity in access to anti-amyloid immunotherapeutics, with implications for national authorities worldwide evaluating these and other new disease-modifying therapeutics for Alzheimer's disease.


Assuntos
Síndrome de Down , Humanos , Estados Unidos , Doença de Alzheimer/tratamento farmacológico , Adulto , Anticorpos Monoclonais/uso terapêutico , Imunoterapia/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38523701

RESUMO

Background: Late-life depression is characterized by disability, cognitive impairment and decline, and a high risk of recurrence following remission. Aside from past psychiatric history, prognostic neurobiological and clinical factors influencing recurrence risk are unclear. Moreover, it is unclear if cognitive impairment predisposes to recurrence, or whether recurrent episodes may accelerate brain aging and cognitive decline. The purpose of the REMBRANDT study (Recurrence markers, cognitive burden, and neurobiological homeostasis in late-life depression) is to better elucidate these relationships and identify phenotypic, cognitive, environmental, and neurobiological factors contributing to and predictive of depression recurrence. Methods: Across three sites, REMBRANDT will enroll 300 depressed elders who will receive antidepressant treatment. The goal is to enroll 210 remitted depressed participants and 75 participants with no mental health history into a two-year longitudinal phase focusing on depression recurrence. Participants are evaluated every 2 months with deeper assessments occurring every 8 months, including structural and functional neuroimaging, environmental stress assessments, deep symptom phenotyping, and two weeks of 'burst' ecological momentary assessments to elucidate variability in symptoms and cognitive performance. A broad neuropsychological test battery is completed at the beginning and end of the longitudinal study. Significance: REMBRANDT will improve our understanding of how alterations in neural circuits and cognition that persist during remission contribute to depression recurrence vulnerability. It will also elucidate how these processes may contribute to cognitive impairment and decline. This project will obtain deep phenotypic data that will help identify vulnerability and resilience factors that can help stratify individual clinical risk.

6.
EBioMedicine ; 103: 105080, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552342

RESUMO

BACKGROUND: Neuroimaging studies often quantify tau burden in standardized brain regions to assess Alzheimer disease (AD) progression. However, this method ignores another key biological process in which tau spreads to additional brain regions. We have developed a metric for calculating the extent tau pathology has spread throughout the brain and evaluate the relationship between this metric and tau burden across early stages of AD. METHODS: 445 cross-sectional participants (aged ≥ 50) who had MRI, amyloid PET, tau PET, and clinical testing were separated into disease-stage groups based on amyloid positivity and cognitive status (older cognitively normal control, preclinical AD, and symptomatic AD). Tau burden and tau spatial spread were calculated for all participants. FINDINGS: We found both tau metrics significantly elevated across increasing disease stages (p < 0.0001) and as a function of increasing amyloid burden for participants with preclinical (p < 0.0001, p = 0.0056) and symptomatic (p = 0.010, p = 0.0021) AD. An interaction was found between tau burden and tau spatial spread when predicting amyloid burden (p = 0.00013). Analyses of slope between tau metrics demonstrated more spread than burden in preclinical AD (ß = 0.59), but then tau burden elevated relative to spread (ß = 0.42) once participants had symptomatic AD, when the tau metrics became highly correlated (R = 0.83). INTERPRETATION: Tau burden and tau spatial spread are both strong biomarkers for early AD but provide unique information, particularly at the preclinical stage. Tau spatial spread may demonstrate earlier changes than tau burden which could have broad impact in clinical trial design. FUNDING: This research was supported by the Knight Alzheimer Disease Research Center (Knight ADRC, NIH grants P30AG066444, P01AG026276, P01AG003991), Dominantly Inherited Alzheimer Network (DIAN, NIH grants U01AG042791, U19AG03243808, R01AG052550-01A1, R01AG05255003), and the Barnes-Jewish Hospital Foundation Willman Scholar Fund.

7.
Brain Commun ; 6(2): fcae081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505230

RESUMO

Alzheimer's disease biomarkers are crucial to understanding disease pathophysiology, aiding accurate diagnosis and identifying target treatments. Although the number of biomarkers continues to grow, the relative utility and uniqueness of each is poorly understood as prior work has typically calculated serial pairwise relationships on only a handful of markers at a time. The present study assessed the cross-sectional relationships among 27 Alzheimer's disease biomarkers simultaneously and determined their ability to predict meaningful clinical outcomes using machine learning. Data were obtained from 527 community-dwelling volunteers enrolled in studies at the Charles F. and Joanne Knight Alzheimer Disease Research Center at Washington University in St Louis. We used hierarchical clustering to group 27 imaging, CSF and plasma measures of amyloid beta, tau [phosphorylated tau (p-tau), total tau t-tau)], neuronal injury and inflammation drawn from MRI, PET, mass-spectrometry assays and immunoassays. Neuropsychological and genetic measures were also included. Random forest-based feature selection identified the strongest predictors of amyloid PET positivity across the entire cohort. Models also predicted cognitive impairment across the entire cohort and in amyloid PET-positive individuals. Four clusters emerged reflecting: core Alzheimer's disease pathology (amyloid and tau), neurodegeneration, AT8 antibody-associated phosphorylated tau sites and neuronal dysfunction. In the entire cohort, CSF p-tau181/Aß40lumi and Aß42/Aß40lumi and mass spectrometry measurements for CSF pT217/T217, pT111/T111, pT231/T231 were the strongest predictors of amyloid PET status. Given their ability to denote individuals on an Alzheimer's disease pathological trajectory, these same markers (CSF pT217/T217, pT111/T111, p-tau/Aß40lumi and t-tau/Aß40lumi) were largely the best predictors of worse cognition in the entire cohort. When restricting analyses to amyloid-positive individuals, the strongest predictors of impaired cognition were tau PET, CSF t-tau/Aß40lumi, p-tau181/Aß40lumi, CSF pT217/217 and pT205/T205. Non-specific CSF measures of neuronal dysfunction and inflammation were poor predictors of amyloid PET and cognitive status. The current work utilized machine learning to understand the interrelationship structure and utility of a large number of biomarkers. The results demonstrate that, although the number of biomarkers has rapidly expanded, many are interrelated and few strongly predict clinical outcomes. Examining the entire corpus of available biomarkers simultaneously provides a meaningful framework to understand Alzheimer's disease pathobiological change as well as insight into which biomarkers may be most useful in Alzheimer's disease clinical practice and trials.

8.
Neuropsychology ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330359

RESUMO

OBJECTIVE: Mind wandering refers to periods of internally directed attention and comprises up to 30% or more of our waking thoughts. Frequent mind wandering can be detrimental to ongoing task performance. We aim to determine whether rates of mind wandering change in healthy aging and mild cognitive impairment and how differences in mind wandering contribute to differences in attention and working memory. METHOD: We administered a standard behavioral task, the Sustained Attention to Response Test, to measure mind wandering in healthy younger adults (N = 66), healthy older adults (N = 51), and adults with cognitive impairment (N = 38), that was completed daily for 3 weeks. The N-back test was also administered at a reduced frequency as a measure of working memory performance. RESULTS: Generally speaking, averaged across 3 weeks of testing, relative to healthy older adults, mind wandering was higher in younger adults and in cognitive impairment, although the specific patterns varied across mind wandering states. Multiple states of mind wandering also predicted working memory performance; however, reaction time variability tended to be the best predictor based on model comparisons. Each state was also modestly associated with different dispositional factors including mood and Agreeableness. CONCLUSIONS: Patterns of mind wandering change across healthy aging and cognitive impairment and are related to individual differences in multiple dispositional factors and also working memory performance. These results suggest that different states of mind wandering should be measured and accounted for when modeling cognitive change in healthy and pathological aging. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

9.
Neurology ; 102(4): e208013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315956

RESUMO

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) is primarily associated with accumulations of amyloid plaques and tau tangles in gray matter, however, it is now acknowledged that neuroinflammation, particularly in white matter (WM), significantly contributes to the development and progression of AD. This study aims to investigate WM neuroinflammation in the continuum of AD and its association with AD pathologies and cognition using diffusion-based neuroinflammation imaging (NII). METHODS: This is a cross-sectional, single-center, retrospective evaluation conducted on an observational study of 310 older research participants who were enrolled in the Knight Alzheimer's Disease Research Center cohort. Hindered water ratio (HR), an index of WM neuroinflammation, was quantified by a noninvasive diffusion MRI method, NII. The alterations of NII-HR were investigated at different AD stages, classified based on CSF concentrations of ß-amyloid (Aß) 42/Aß40 for amyloid and phosphorylated tau181 (p-tau181) for tau. On the voxel and regional levels, the relationship between NII-HR and CSF markers of amyloid, tau, and neuroinflammation were examined, as well as cognition. RESULTS: This cross-sectional study included 310 participants (mean age 67.1 [±9.1] years), with 52 percent being female. Subgroups included 120 individuals (38.7%) with CSF measures of soluble triggering receptor expressed on myeloid cells 2, 80 participants (25.8%) with CSF measures of chitinase-3-like protein 1, and 110 individuals (35.5%) with longitudinal cognitive measures. The study found that cognitively normal individuals with positive CSF Aß42/Aß40 and p-tau181 had higher HR than healthy controls and those with positive CSF Aß42/Aß40 but negative p-tau181. WM tracts with elevated NII-HR in individuals with positive CSF Aß42/Aß40 and p-tau181 were primarily located in the posterior brain regions while those with elevated NII-HR in individuals with positive CSF Aß42/Aß40 and p-tau181 connected the posterior and anterior brain regions. A significant negative correlation between NII-HR and CSF Aß42/Aß40 was found in individuals with positive CSF Aß42/Aß40. Baseline NII-HR correlated with baseline cognitive composite score and predicted longitudinal cognitive decline. DISCUSSION: Those findings suggest that WM neuroinflammation undergoes alterations before the onset of AD clinical symptoms and that it interacts with amyloidosis. This highlights the potential value of noninvasive monitoring of WM neuroinflammation in AD progression and treatment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/patologia , Estudos Transversais , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Retrospectivos , Proteínas tau , Doenças Neuroinflamatórias , Biomarcadores , Peptídeos beta-Amiloides , Fragmentos de Peptídeos
10.
Alzheimers Dement ; 20(4): 2698-2706, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400532

RESUMO

INTRODUCTION: Increasing evidence suggests that amyloid reduction could serve as a plausible surrogate endpoint for clinical and cognitive efficacy. The double-blind phase 3 DIAN-TU-001 trial tested clinical and cognitive declines with increasing doses of solanezumab or gantenerumab. METHODS: We used latent class (LC) analysis on data from the Dominantly Inherited Alzheimer Network Trials Unit 001 trial to test amyloid positron emission tomography (PET) reduction as a potential surrogate biomarker. RESULTS: LC analysis categorized participants into three classes: amyloid no change, amyloid reduction, and amyloid growth, based on longitudinal amyloid Pittsburgh compound B PET standardized uptake value ratio data. The amyloid-no-change class was at an earlier disease stage for amyloid amounts and dementia. Despite similar baseline characteristics, the amyloid-reduction class exhibited reductions in the annual decline rates compared to the amyloid-growth class across multiple biomarker, clinical, and cognitive outcomes. DISCUSSION: LC analysis indicates that amyloid reduction is associated with improved clinical outcomes and supports its use as a surrogate biomarker in clinical trials. HIGHLIGHTS: We used latent class (LC) analysis to test amyloid reduction as a surrogate biomarker. Despite similar baseline characteristics, the amyloid-reduction class exhibited remarkably better outcomes compared to the amyloid-growth class across multiple measures. LC analysis proves valuable in testing amyloid reduction as a surrogate biomarker in clinical trials lacking significant treatment effects.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Amiloide , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Biomarcadores , Método Duplo-Cego , Análise de Classes Latentes , Tomografia por Emissão de Pósitrons/métodos
11.
Alzheimers Dement ; 20(3): 2080-2088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224146

RESUMO

INTRODUCTION: Reversion, or change in cognitive status from impaired to normal, is common in aging and dementia studies, but it remains unclear what factors predict reversion. METHODS: We investigated whether reverters, defined as those who revert from a Clinical Dementia Rating® (CDR®) scale score of 0.5 to CDR 0) differed on cognition and biomarkers from unimpaired participants (always CDR 0) and impaired participants (converted to CDR > 0 and had no reversion events). Models evaluated relationships between biomarker status, apolipoprotein E (APOE) ε4 status, and cognition. Additional models described predictors of reversion and predictors of eventual progression to CDR > 0. RESULTS: CDR reversion was associated with younger age, better cognition, and negative amyloid biomarker status. Reverters that eventually progressed to CDR > 0 had more visits, were older, and were more likely to have an APOE ε4 allele. DISCUSSION: CDR reversion occupies a transitional phase in disease progression between cognitive normality and overt dementia. Reverters may be ideal candidates for secondary prevention Alzheimer's disease (AD) trials. HIGHLIGHTS: Reverters had more longitudinal cognitive decline than those who remained cognitively normal. Predictors of reversion: younger age, better cognition, and negative amyloid biomarker status. Reverting from CDR 0.5 to 0 is a risk factor for future conversion to CDR > 0. CDR reversion may be a transitional phase in Alzheimer's Disease progression. CDR reverters may be ideal for Alzheimer's disease secondary prevention trials.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Disfunção Cognitiva/psicologia , Cognição , Testes de Estado Mental e Demência , Biomarcadores , Progressão da Doença
12.
J Int Neuropsychol Soc ; 30(5): 428-438, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38282413

RESUMO

OBJECTIVE: Maintaining attention underlies many aspects of cognition and becomes compromised early in neurodegenerative diseases like Alzheimer's disease (AD). The consistency of maintaining attention can be measured with reaction time (RT) variability. Previous work has focused on measuring such fluctuations during in-clinic testing, but recent developments in remote, smartphone-based cognitive assessments can allow one to test if these fluctuations in attention are evident in naturalistic settings and if they are sensitive to traditional clinical and cognitive markers of AD. METHOD: Three hundred and seventy older adults (aged 75.8 +/- 5.8 years) completed a week of remote daily testing on the Ambulatory Research in Cognition (ARC) smartphone platform and also completed clinical, genetic, and conventional in-clinic cognitive assessments. RT variability was assessed in a brief (20-40 seconds) processing speed task using two different measures of variability, the Coefficient of Variation (CoV) and the Root Mean Squared Successive Difference (RMSSD) of RTs on correct trials. RESULTS: Symptomatic participants showed greater variability compared to cognitively normal participants. When restricted to cognitively normal participants, APOE ε4 carriers exhibited greater variability than noncarriers. Both CoV and RMSSD showed significant, and similar, correlations with several in-clinic cognitive composites. Finally, both RT variability measures significantly mediated the relationship between APOE ε4 status and several in-clinic cognition composites. CONCLUSIONS: Attentional fluctuations over 20-40 seconds assessed in daily life, are sensitive to clinical status and genetic risk for AD. RT variability appears to be an important predictor of cognitive deficits during the preclinical disease stage.


Assuntos
Doença de Alzheimer , Tempo de Reação , Humanos , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/genética , Idoso , Masculino , Feminino , Tempo de Reação/fisiologia , Idoso de 80 Anos ou mais , Testes Neuropsicológicos , Apolipoproteína E4/genética , Smartphone , Atenção/fisiologia
13.
Neuropsychology ; 38(1): 69-80, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37079810

RESUMO

OBJECTIVE: Observational studies on aging and Alzheimer's disease (AD) typically focus on mean-level changes in cognitive performance over relatively long periods of time (years or decades). Additionally, some studies have examined how trial-level fluctuations in speeded reaction time are related to both age and AD. The aim of the current project was to describe patterns of variability across repeated days of testing as a function of AD risk in cognitively normal older adults. METHOD: The current project examined the performance of the Ambulatory Research in Cognition (ARC) smartphone application, a high-frequency remote cognitive assessment paradigm, that administers brief tests of episodic memory, spatial working memory, and processing speed. Bayesian mixed-effects location scale models were used to explore differences in mean cognitive performance and intraindividual variability across 28 repeated sessions over a 1-week assessment interval as function of age and genetic risk of AD, specifically the presence of at least one apolipoprotein E (APOE) ε4 allele. RESULTS: Mean performance on processing speed and working memory was negatively related to age and APOE status. More importantly, e4 carriers exhibited increased session-level variability on a test of processing speed compared to noncarriers. Age and education did not consistently relate to cognitive variability, contrary to expectations. CONCLUSION: Preclinical AD risk, defined as possessing at least one APOE ε4 allele, is not only associated with mean-level performance differences, but also with increases in variability across repeated testing occasions particularly on a test of processing speed. Thus, cognitive variability may serve as an additional and important indicator of AD risk. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Teorema de Bayes , Apolipoproteína E4/genética , Testes Neuropsicológicos , Cognição , Apolipoproteínas E/genética , Genótipo
14.
Alzheimers Dement ; 20(1): 47-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740921

RESUMO

INTRODUCTION: Studies suggest distinct differences in the development, presentation, progression, and response to treatment of Alzheimer's disease (AD) between females and males. We investigated sex differences in cognition, neuroimaging, and fluid biomarkers in dominantly inherited AD (DIAD). METHODS: Three hundred twenty-five mutation carriers (55% female) and one hundred eighty-six non-carriers (58% female) of the Dominantly Inherited Alzheimer Network Observational Study were analyzed. Linear mixed models and Spearman's correlation explored cross-sectional sex differences in cognition, cerebrospinal fluid (CSF) biomarkers, Pittsburgh compound B positron emission tomography (11 C-PiB PET) and structural magnetic resonance imaging (MRI). RESULTS: Female carriers performed better than males on delayed recall and processing speed despite similar hippocampal volumes. As the disease progressed, symptomatic females revealed higher increases in MRI markers of neurodegeneration and memory impairment. PiB PET and established CSF AD markers revealed no sex differences. DISCUSSION: Our findings suggest an initial cognitive reserve in female carriers followed by a pronounced increase in neurodegeneration coupled with worse performance on delayed recall at later stages of DIAD.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Estudos Transversais , Caracteres Sexuais , Tomografia por Emissão de Pósitrons , Mutação/genética , Biomarcadores
15.
Alzheimers Dement ; 20(2): 1038-1049, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37855447

RESUMO

INTRODUCTION: This study aimed to investigate the influence of the overall Alzheimer's disease (AD) genetic architecture on Down syndrome (DS) status, cognitive measures, and cerebrospinal fluid (CSF) biomarkers. METHODS: AD polygenic risk scores (PRS) were tested for association with DS-related traits. RESULTS: The AD risk PRS was associated with disease status in several cohorts of sporadic late- and early-onset and familial late-onset AD, but not in familial early-onset AD or DS. On the other hand, lower DS Mental Status Examination memory scores were associated with higher PRS, independent of intellectual disability and APOE (PRS including APOE, PRSAPOE , p = 2.84 × 10-4 ; PRS excluding APOE, PRSnonAPOE , p = 1.60 × 10-2 ). PRSAPOE exhibited significant associations with Aß42, tTau, pTau, and Aß42/40 ratio in DS. DISCUSSION: These data indicate that the AD genetic architecture influences cognitive and CSF phenotypes in DS adults, supporting common pathways that influence memory decline in both traits. HIGHLIGHTS: Examination of the polygenic risk of AD in DS presented here is the first of its kind. AD PRS influences memory aspects in DS individuals, independently of APOE genotype. These results point to an overlap between the genes and pathways that leads to AD and those that influence dementia and memory decline in the DS population. APOE ε4 is linked to DS cognitive decline, expanding cognitive insights in adults.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Adulto , Humanos , Doença de Alzheimer/diagnóstico , Síndrome de Down/genética , Estratificação de Risco Genético , Apolipoproteínas E/genética , Fenótipo , Disfunção Cognitiva/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Cognição , Transtornos da Memória , Peptídeos beta-Amiloides/líquido cefalorraquidiano
16.
Ann Neurol ; 95(3): 495-506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38038976

RESUMO

OBJECTIVE: Biomarkers of Alzheimer disease vary between groups of self-identified Black and White individuals in some studies. This study examined whether the relationships between biomarkers or between biomarkers and cognitive measures varied by racialized groups. METHODS: Cerebrospinal fluid (CSF), amyloid positron emission tomography (PET), and magnetic resonance imaging measures were harmonized across four studies of memory and aging. Spearman correlations between biomarkers and between biomarkers and cognitive measures were calculated within each racialized group, then compared between groups by standard normal tests after Fisher's Z-transformations. RESULTS: The harmonized dataset included at least one biomarker measurement from 495 Black and 2,600 White participants. The mean age was similar between racialized groups. However, Black participants were less likely to have cognitive impairment (28% vs 36%) and had less abnormality of some CSF biomarkers including CSF Aß42/40, total tau, p-tau181, and neurofilament light. CSF Aß42/40 was negatively correlated with total tau and p-tau181 in both groups, but at a smaller magnitude in Black individuals. CSF Aß42/40, total tau, and p-tau181 had weaker correlations with cognitive measures, especially episodic memory, in Black than White participants. Correlations of amyloid measures between CSF (Aß42/40, Aß42) and PET imaging were also weaker in Black than White participants. Importantly, no differences based on race were found in correlations between different imaging biomarkers, or in correlations between imaging biomarkers and cognitive measures. INTERPRETATION: Relationships between CSF biomarkers but not imaging biomarkers varied by racialized groups. Imaging biomarkers performed more consistently across racialized groups in associations with cognitive measures. ANN NEUROL 2024;95:495-506.


Assuntos
Doença de Alzheimer , Cognição , Disfunção Cognitiva , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Proteínas tau/líquido cefalorraquidiano , Negro ou Afro-Americano , Brancos
17.
Alzheimers Dement ; 20(3): 1497-1514, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018701

RESUMO

INTRODUCTION: The extent to which the Big Five personality traits and subjective well-being (SWB) are discriminatory predictors of clinical manifestation of dementia versus dementia-related neuropathology is unclear. METHODS: Using data from eight independent studies (Ntotal = 44,531; Ndementia = 1703; baseline Mage = 49 to 81 years, 26 to 61% female; Mfollow-up range = 3.53 to 21.00 years), Bayesian multilevel models tested whether personality traits and SWB differentially predicted neuropsychological and neuropathological characteristics of dementia. RESULTS: Synthesized and individual study results indicate that high neuroticism and negative affect and low conscientiousness, extraversion, and positive affect were associated with increased risk of long-term dementia diagnosis. There were no consistent associations with neuropathology. DISCUSSION: This multistudy project provides robust, conceptually replicated and extended evidence that psychosocial factors are strong predictors of dementia diagnosis but not consistently associated with neuropathology at autopsy. HIGHLIGHTS: N(+), C(-), E(-), PA(-), and NA(+) were associated with incident diagnosis. Results were consistent despite self-report versus clinical diagnosis of dementia. Psychological factors were not associated with neuropathology at autopsy. Individuals with higher conscientiousness and no diagnosis had less neuropathology. High C individuals may withstand neuropathology for longer before death.


Assuntos
Demência , Personalidade , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Teorema de Bayes , Autopsia , Neuropatologia , Demência/diagnóstico , Demência/patologia
18.
Neuroimage Clin ; 41: 103551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38150745

RESUMO

The use of biomarkers for the early detection of Alzheimer's disease (AD) is crucial for developing potential therapeutic treatments. Positron Emission Tomography (PET) is a well-established tool used to detect ß-amyloid (Aß) plaques in the brain. Previous studies have shown that cross-sectional biomarkers can predict cognitive decline (Schindler et al.,2021). However, it is still unclear whether longitudinal Aß-PET may have additional value for predicting time to cognitive impairment in AD. The current study aims to evaluate the ability of baseline- versus longitudinal rate of change in-11C-Pittsburgh compound B (PiB) Aß-PET to predict cognitive decline. A cohort of 153 participants who previously underwent PiB-PET scans and comprehensive clinical assessments were used in this study. Our analyses revealed that baseline Aß is significantly associated with the rate of change in cognitive composite scores, with cognition declining more rapidly when baseline PiB Aß levels were higher. In contrast, no signification association was identified between the rate of change in PiB-PET Aß and cognitive decline. Additionally, the ability of the rate of change in the PiB-PET measures to predict cognitive decline was significantly influenced by APOE ε4 carrier status. These results suggest that a single PiB-PET scan is sufficient to predict cognitive decline and that longitudinal measures of Aß accumulation do not improve the prediction of cognitive decline once someone is amyloid positive.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Amiloide/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Biomarcadores , Tomografia por Emissão de Pósitrons/métodos , Estudos Longitudinais
19.
Mol Neurodegener ; 18(1): 98, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111006

RESUMO

BACKGROUND: "Brain-predicted age" estimates biological age from complex, nonlinear features in neuroimaging scans. The brain age gap (BAG) between predicted and chronological age is elevated in sporadic Alzheimer disease (AD), but is underexplored in autosomal dominant AD (ADAD), in which AD progression is highly predictable with minimal confounding age-related co-pathology. METHODS: We modeled BAG in 257 deeply-phenotyped ADAD mutation-carriers and 179 non-carriers from the Dominantly Inherited Alzheimer Network using minimally-processed structural MRI scans. We then tested whether BAG differed as a function of mutation and cognitive status, or estimated years until symptom onset, and whether it was associated with established markers of amyloid (PiB PET, CSF amyloid-ß-42/40), phosphorylated tau (CSF and plasma pTau-181), neurodegeneration (CSF and plasma neurofilament-light-chain [NfL]), and cognition (global neuropsychological composite and CDR-sum of boxes). We compared BAG to other MRI measures, and examined heterogeneity in BAG as a function of ADAD mutation variants, APOE Îµ4 carrier status, sex, and education. RESULTS: Advanced brain aging was observed in mutation-carriers approximately 7 years before expected symptom onset, in line with other established structural indicators of atrophy. BAG was moderately associated with amyloid PET and strongly associated with pTau-181, NfL, and cognition in mutation-carriers. Mutation variants, sex, and years of education contributed to variability in BAG. CONCLUSIONS: We extend prior work using BAG from sporadic AD to ADAD, noting consistent results. BAG associates well with markers of pTau, neurodegeneration, and cognition, but to a lesser extent, amyloid, in ADAD. BAG may capture similar signal to established MRI measures. However, BAG offers unique benefits in simplicity of data processing and interpretation. Thus, results in this unique ADAD cohort with few age-related confounds suggest that brain aging attributable to AD neuropathology can be accurately quantified from minimally-processed MRI.


Assuntos
Doença de Alzheimer , Humanos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Amiloide , Envelhecimento , Biomarcadores , Tomografia por Emissão de Pósitrons , Proteínas tau/genética , Proteínas tau/metabolismo
20.
Brain Commun ; 5(6): fcad280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942088

RESUMO

Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-ε4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles; sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA